
Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

Homomorphic Encryption in MLOps using CKKS 
Approximate Arithmetics 

Implementing Encrypted Stochastic Gradient Descent on Logistic Regression 
 

Rayhan Kinan Muhannad – 13520065 
Program Studi Teknik Informatika 

Sekolah Teknik Elektro dan Informatika 
Institut Teknologi Bandung, Jalan Ganesha 10 Bandung 

E-mail (gmail): rayhankinan@gmail.com 
 

 
Abstract—In the recent years, the issue regarding security and 

data privacy in a machine learning system has been more 
prevalent than ever. One solution in developing a secure machine 
learning system is by implementing a homomorphic encryption 
into the training and deploying operations of a machine learning 
model. The author decided to use the CKKS (Cheong-Kim-Kim-
Song) fully homomorphic encryption scheme to secure clients’ 
sensitive data in a logistic regression model. The resulting F1 score 
metrics for model that trained on plaintext data and for the model 
that trained on ciphertext data shows no difference in term of 
magnitude. Although, there were some computational overheads 
in the form of time and resources needed for the training model by 
using ciphertext data. The overhead cost is significant enough that 
the industrial wide scale of the CKKS encrypted machine learning 
systems is yet possible given the scale and volume of data operated. 

Keywords—homomorphic encryption; CKKS encryption; logistic 
regression 

I.  INTRODUCTION 
Data security is a crucial part of machine learning 

development to protect sensitive information, preserve privacy, 
maintain the integrity of models, and mitigate potential risks. 
Developing a machine learning model often requires access to 
large datasets that may contain sensitive information, such as 
personally identifiable information (PII), medical records, 
financial data, or proprietary business information. If these 
datasets are not adequately protected, there is a risk of exposing 
sensitive data to unauthorized individuals or entities. These 
machine-learning systems typically store and process large 
amounts of data, making them attractive targets for cyberattacks. 
A data breach can lead to unauthorized access, theft, or 
manipulation of sensitive data. It can have severe consequences, 
including financial loss, reputational damage, and violation of 
privacy regulations.  

Machine learning models also can inadvertently learn or 
infer sensitive information from the training data, even if the 
data itself is not directly exposed to the engineer. This is known 
as “unintended memorization” or “model inversion” attacks. 
Unintended memorization is a term in machine learning that 
refers to a phenomenon where a machine learning model 
unintentionally learns or memorizes specific details or patterns 

present in the training data that are not relevant to the task it is 
supposed to solve. This can occur even when the sensitive 
information or patterns are not explicitly exposed or labelled in 
the dataset. When a model unintentionally memorizes sensitive 
information and the model is exposed to public use, it can raise 
serious privacy concerns. The model may exhibit a potential 
privacy risk by revealing sensitive information about individuals 
or entities during inference or by being susceptible to attacks that 
exploit the memorized information. 

Other potential risks in developing a machine learning model 
are known as “adversarial attacks”. Adversarial attacks aim to 
manipulate or deceive machine learning models by injecting 
malicious data or perturbations into the input. These attacks can 
lead to incorrect predictions, potentially compromising the 
integrity and security of the system.  Adversarial attacks 
highlight the vulnerabilities and limitations of machine learning 
models. They demonstrate that even state-of-the-art models can 
be easily fooled by carefully crafted inputs, leading to 
potentially severe consequences in real-world scenarios. 
Adversarial attacks are especially concerning when dealing with 
sensitive applications such as healthcare or finance. 

There are some solutions proposed for solving all those 
problems related to machine learning development. One of the 
most promising solutions is the use of homomorphic encryption 
in training and deploying machine learning models.  

Homomorphic encryption is a cryptographic technique that 
allows for performing computations on encrypted data without 
the need for decryption. In other words, it enables data to remain 
encrypted while still allowing some mathematical operations 
(like addition and multiplication) to be performed on the 
encrypted data, producing results that are encrypted as well. The 
encrypted data can be processed by a third party or a 
computation server without the need to access the original 
plaintext data. Homomorphic encryption can be applied to 
various machine learning algorithms and models, making it a 
versatile solution for privacy-preserving machine learning. It 
supports training, inference, and other computations on 
encrypted data. 

However, homomorphic encryption techniques usually 
come with significant computational overhead compared to 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

traditional computations on plaintext data. The encryption and 
decryption operations, as well as the computations on encrypted 
data, can be computationally intensive and slower. 

After weighing the advantages and drawbacks of the use of 
homomorphic encryption in a machine learning system, the 
author decides to try implementing a simple model using a 
homomorphic encrypted dataset. The author decides that the 
easiest machine learning model to be implemented is the logistic 
regression trained using a stochastic gradient descent algorithm. 

II. THEORITICAL BASE 

A. Homomorphic Encryption 
Homomorphic encryption is a cryptographic technique that 

allows computations to be performed directly on encrypted data 
without requiring decryption. It enables performing operations 
on encrypted data while maintaining the privacy and 
confidentiality of the underlying information. This property 
makes homomorphic encryption particularly valuable in 
scenarios where sensitive data needs to be processed or analyzed 
while preserving privacy. 

The fundamental idea behind homomorphic encryption is to 
design encryption algorithms in such a way that they support 
mathematical operations on ciphertexts, which, when decrypted, 
yield the same result as if the operations were performed on the 
corresponding plaintexts. This property is achieved using 
mathematical structures and techniques that enable 
computations on encrypted data. 

There are different types of homomorphic encryption 
schemes, including partially homomorphic encryption (PHE) 
and fully homomorphic encryption (FHE). PHE schemes 
support a limited set of mathematical operations, such as 
addition or multiplication, on encrypted data. FHE schemes, on 
the other hand, support a broader range of operations, including 
arbitrary computations involving additions, multiplications, and 
even more complex operations like comparisons and logical 
operations. 

Homomorphic encryption commonly involves three main 
operations: 

• Encryption 

The process of converting plaintext data into encrypted form 
using a specific encryption algorithm. The encryption 
algorithm takes the plaintext data and a cryptographic key as 
input and produces the corresponding ciphertext. 

• Homomorphic Operations 

These operations are performed on the encrypted ciphertexts, 
enabling mathematical computations to be performed 
directly on the encrypted data. Depending on the type of 
homomorphic encryption scheme, different operations can 
be supported, such as addition, multiplication, or more 
advanced operations. 

• Decryption 

The process of converting the encrypted ciphertext back into 
plaintext form. Decryption requires the use of a 

corresponding decryption key, which is kept secret and only 
known to authorized parties. The decryption operation 
ensures that the result of the computation on the encrypted 
data is revealed in plaintext form. 

The main drawbacks of homomorphic encryption schemes 
are that typically the scheme come with certain performance 
overhead due to the complexity of the cryptographic operations 
involved. The computational cost of performing operations on 
encrypted data is generally higher than performing the same 
operations on plaintext data. 

B. CKKS Encryption Scheme 
CKKS (Cheon-Kim-Kim-Song) is a homomorphic 

encryption scheme that provides a fully homomorphic 
encryption (FHE) solution for approximate computations on 
encrypted data. It is specifically designed to handle 
computations involving real or complex numbers, making it 
suitable for applications that require computations on 
continuous data, such as machine learning and statistical 
analysis. 

The CKKS homomorphic encryption scheme extends the 
traditional binary-based homomorphic encryption schemes, like 
the Binary Encrypted Integer (BEI) scheme, to support 
operations on encrypted real or complex numbers. It achieves 
this by leveraging the concept of approximate arithmetic, where 
the computations are performed with some degree of precision 
loss. 

The key components of CKKS encryption scheme are as 
follows: 

• Parameter Generation 

The CKKS scheme begins by selecting appropriate 
parameters. This includes choosing prime numbers and 
generating polynomial rings over these primes. The choice 
of parameters impacts the security, efficiency, and precision 
of the computations. 

• Key Generation 

The algorithm generates encryption keys and decryption key. 
The encryption key is used to encrypt plaintext values, while 
the decryption key is required to reveal the plaintext result 
after computation. Key generation involves random number 
generation and mathematical operations. 

• Encoding 

Before encryption begins, plaintext values are encoded as 
polynomials. Each plaintext value is represented by a 
polynomial with coefficients that encode the value. The 
encoding process ensures that the plaintext values can be 
manipulated using the mathematical operations supported by 
the CKKS scheme. 

Some of the key aspects at encoding a CKKS plaintext are: 

o Polynomial Ring 

CKKS operates in a polynomial ring over a set of prime 
numbers. The choice of the prime numbers and their 
characteristics impact the precision and security of the 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

encoding process. The polynomial ring determines the 
maximum degree of the polynomials used for encoding. 

o Scaling Factor 

CKKS employs a scaling technique to handle 
computations with different scales. The scaling factor is 
a power of 2 that determines the precision and dynamic 
range of the encoded values. The scaling factor affects 
the precision of the encoded values and the maximum 
range they can represent. 

o Coefficient Generation 

To encode a plaintext value, a polynomial is constructed 
with coefficients that represent the value. The 
coefficients are generated based on the desired precision 
and the scaling factor. Typically, the coefficients are 
chosen from the integer range that corresponds to the 
precision and scaling factor. 

o Normalization 

After generating the polynomial coefficients, 
normalization is performed. Normalization ensures that 
the polynomial coefficients fall within the desired range 
defined by the scaling factor. This step is important to 
maintain the precision and avoid numerical instability 
during computations. 

• Encryption 

The encoding step is followed by the encryption of the 
encoded polynomials. Encryption transforms the 
polynomials into ciphertexts while preserving the privacy of 
the underlying plaintext values. The encryption process 
incorporates randomness and mathematical operations to 
hide the information contained in the polynomials. 

Some of the key aspects at encrypting a CKKS polynomial 
are: 

o Main Encryption Operation 

To encrypt a plaintext value, the encoded polynomial is 
combined with randomness. Randomness, or noise, is 
added to the polynomial to protect the privacy of the 
original plaintext. The randomness prevents an attacker 
from extracting information from the ciphertext. 

o Modular Reduction and Relinearization 

After encryption, the resulting ciphertext polynomial 
may have coefficients outside the desired range. Modular 
reduction is performed to bring the polynomial 
coefficients back within the desired range. 
Relinearization is an optional step that reduces the size of 
the ciphertext, making computations more efficient. 

o Serialization 

The encrypted polynomial, along with the public key and 
other necessary metadata, is serialized into a ciphertext 
object. The ciphertext object can be transmitted to a 
remote server or stored securely in a database. 

• Homomorphic Operations 

CKKS supports homomorphic operations on the encrypted 
ciphertexts. These operations include addition, 
multiplication, and scaling (multiplication by a plaintext 
constant). Homomorphic operations can be performed 
directly on the ciphertexts without decrypting them, allowing 
computations on encrypted data.  

The author will explain each of the operations in the section 
below: 

o Addition 

Addition is a straightforward operation in CKKS that can 
be performed on encrypted ciphertexts. To add two 
ciphertexts, the corresponding ciphertext polynomials 
are added coefficientwise. The addition operation is 
performed modulo a predefined encryption parameter, 
typically represented by a large prime number. The 
resulting ciphertext represents the sum of the plaintext 
values encrypted in the original ciphertexts. 

o Multiplication 

Multiplication in CKKS is a more complex operation that 
requires additional steps to preserve privacy. To multiply 
two ciphertexts, the corresponding ciphertext 
polynomials are multiplied coefficientwise. Since 
multiplication can cause the polynomial degree to exceed 
the desired range, additional steps are needed to handle 
the overflow. 

The step by step of multiplication using encrypted data 
are as follows. The first step is to execute homomorphic 
multiplication using the predefined encryption 
parameter. This operation results in a ciphertext 
representing the product of the plaintext values encrypted 
in the original ciphertexts. The next step is to rescale the 
resulting multiplication. After the multiplication, the 
ciphertext may accumulate noise and have coefficients 
outside the desired range. Rescaling is performed to 
reduce the noise and adjust the polynomial degree. It 
involves dividing the ciphertext polynomial by a 
rescaling factor, which effectively reduces the noise 
level. The last step is to relinearize the rescaled result. 
Relinearization is an optional step that reduces the size of 
the ciphertext after multiplication and rescaling. It 
involves re-encrypting a subset of the ciphertext 
polynomials to reduce the overall ciphertext size. 
Relinearization is beneficial in terms of computational 
efficiency for subsequent homomorphic operations. 

o Scaling 

Scaling is an operation that allows adjusting the precision 
and magnitude of the encrypted values. It involves 
multiplying the ciphertext polynomial by a scaling factor. 
The scaling factor determines the precision of the 
encrypted values, and it can be chosen based on the 
desired level of accuracy. Scaling is often necessary to 
handle computations involving large numbers or to 
improve the accuracy of the encrypted results. 

• Noise Management 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

As homomorphic operations are performed, noise is 
introduced into the ciphertexts. Noise arises from 
approximation errors and randomness introduced during 
encryption and homomorphic operations. To maintain 
correctness and security, the noise needs to be managed by 
periodically “refreshing” the ciphertexts or applying noise 
reduction techniques. 

• Decryption 

After the desired computations are completed, the encrypted 
result can be decrypted to obtain an approximate plaintext 
result. The decryption operation uses the decryption key to 
transform the ciphertexts back into the original encoded 
polynomials. The decryption process involves reversing the 
encryption operations while accounting for the precision loss 
and noise. 

• Decoding 

Decoding is the reverse process of encoding, where the 
encrypted polynomial ciphertexts are transformed back into 
approximate plaintext values. The decoding step allows us to 
reveal the approximate plaintext results of the computations 
performed on the encrypted data. It's important to note that 
decoding in CKKS involves precision loss due to the 
inherent approximations in the homomorphic encryption 
scheme. The precision loss is primarily due to the limited 
precision of the polynomial coefficients and the accumulated 
noise during the homomorphic operations. 

 

 
Fig. 1. CKKS Scheme for Encrypting and Decrypting 

C. Logistic Regression 
Logistic regression is a popular statistical and machine 

learning model used for binary classification tasks. It is a 
supervised learning algorithm that predicts the probability of an 
instance belonging to a particular class. In logistic regression, 
the goal is to model the relationship between a set of input 
features and a binary target variable. The target variable 
typically takes on two possible values, such as 0 and 1, or 
"negative" and "positive". The logistic regression model 
estimates the probability that a given instance belongs to the 
positive class based on the input features. 

The key components in building a machine learning model 
using logistic regression are: 

• Hypothesis Function (Sigmoid Function) 

The hypothesis function of logistic regression uses a logistic 
(or sigmoid) function to map the linear combination of input 
features to a value between 0 and 1. 

 
Fig. 2. Hypothesis of Logistic Regression Model 

• Cost Function (Log Loss Function) 

The cost function used in logistic regression is the log loss 
(binary cross-entropy) function. The log loss measures the 
error between the predicted probabilities and the true labels. 
See in the figure below. If y = 1, then the cost = 0, and when 
the prediction = 0, the learning algorithm is punished by a 
very large cost. Similarly, if y = 0, predicting 0 has no 
punishment but predicting 1 has a large value of cost. 

 
Fig. X. Cost Function of Logistic Regression Model 

 
Fig. 3. Summation of Cost Function in Training Data 

• Regularization in Cost Function (L1 and L2) 

Regularization is a technique used in logistic regression to 
prevent overfitting and improve the generalization 
performance of the model. It involves adding a regularization 
term to the cost function, which encourages the model to 
have smaller weights and reduces the complexity of the 
model. Two commonly used regularization techniques are 
L1 regularization (Lasso) and L2 regularization (Ridge).  

L1 regularization adds the sum of the absolute values of the 
weights to the cost function. L1 regularization has the effect 
of shrinking some of the weights towards zero, effectively 
performing feature selection. It can drive some weights to 
exactly zero, resulting in a sparse model. 

L2 regularization adds the sum of the squared values of the 
weights to the cost function. L2 regularization encourages 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

smaller weights but does not drive them to exactly zero. It 
penalizes large weights more strongly than L1 
regularization. 

Regularization helps to reduce overfitting by preventing the 
model from fitting the noise in the training data. It can 
improve the model's ability to generalize to unseen data by 
reducing the variance in the parameter estimates. However, 
it is important to strike a balance between regularization and 
model complexity, as excessive regularization can lead to 
underfitting. 

 
Fig. 4. The Regularized Version of Log Loss Function 

• Model Training (Stochastic Gradient Descent) 

Stochastic Gradient Descent (SGD) is an optimization 
algorithm commonly used in logistic regression (and other 
machine learning models) to find the optimal values of the 
model's parameters. It is a variant of the Gradient Descent 
algorithm that offers computational efficiency and 
scalability, especially for large datasets. 

There are three main steps in optimizing a logistic regression 
model using stochastic gradient descent. The first step is the 
initialization, where the model's parameters (weights and 
biases) are initialized with small random values. The next 
step is to iteratively optimize the parameters (weights and 
biases), in which for each mini-batch, the following steps are 
performed: Forward Propagation (the mini-batch is passed 
through the logistic regression model to compute the 
predicted probabilities for each example); Loss Calculation 
(the loss is computed based on the predicted probabilities and 
the true labels of the examples in the mini-batch); 
Backpropagation (the gradients of the loss with respect to the 
model's parameters are computed); and Parameter Update 
(the model's parameters (weights) are updated using the 
gradients and the learning rate). These steps are repeated for 
a specified number of iterations (epochs) or until 
convergence. 

 
Fig. 5. The 3D Plot for Visualizing Stochastic Gradient 

Descent 

• Model Evaluation 

Once the logistic regression model is trained, it can be used 
to make predictions on new, unseen beforehand data. 
Predicted probabilities can be calculated using threshold to 
make binary class predictions, and model performance can 
be evaluated using metrics such as accuracy, precision, 
recall, F1 score, or area under the ROC curve. There are 
some advantages and drawbacks in selecting one of those 
metrics to evaluate the model. Usually, the accuracy metrics 
are worse at describing a model behavior in less-than-ideal 
environment, as in an imbalanced dataset. Although the 
accuracy metrics does explain the model better in an ideal 
environment. 

D. Encrypted Data Processing 
Encrypted data processing using homomorphic encryption is 

a technique that allows performing computations on encrypted 
data without revealing the underlying plaintext values. It ensures 
the privacy and confidentiality of sensitive data while still 
enabling useful computations and analysis. 

Homomorphic encryption schemes are designed to support 
mathematical operations on encrypted data. They allow data to 
be encrypted in a way that preserves its mathematical properties, 
enabling computations to be performed directly on the encrypted 
data. There are different types of homomorphic encryption, such 
as partially homomorphic encryption and fully homomorphic 
encryption (FHE). 

The steps involved in encrypted data processing using 
homomorphic encryption are: 

• Data Encryption 

The sensitive data is encrypted using an appropriate 
homomorphic encryption scheme. Each data point or 
attribute is transformed into an encrypted representation, 
called a ciphertext, using encryption algorithms. The 
encryption process ensures that the ciphertext maintains the 
mathematical structure of the plaintext data while obscuring 
its actual values. 

• Homomorphic Operations 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

Homomorphic encryption schemes are designed to support 
specific mathematical operations, such as addition and 
multiplication, on the encrypted data. Depending on the type 
of homomorphic encryption used, it may support either 
addition or multiplication (partially homomorphic 
encryption) or both (fully homomorphic encryption). The 
encrypted data can undergo these supported operations 
directly without decryption, preserving the privacy of the 
underlying plaintext values. 

• Computation on Encrypted Data 

Once the data is encrypted, computations can be performed 
on the ciphertexts using the supported homomorphic 
operations. For example, if the encrypted data represents 
numerical values, addition and multiplication operations can 
be applied to the ciphertexts to obtain results that correspond 
to the desired computations. The computations are 
performed on the ciphertexts without revealing the plaintext 
values, ensuring privacy. 

• Result Decryption 

After the desired computations are completed on the 
encrypted data, the result is obtained as an encrypted 
ciphertext. To reveal the plaintext result, a decryption 
operation is performed on the encrypted ciphertext using a 
decryption key. The decryption process transforms the 
encrypted result back into the original plaintext form, 
allowing the computed result to be revealed. 

 

 
Fig. 6. A Secure Scheme of MLOps System using 

Homomorphic Encryption 

III. IMPLEMENTATION 

A. Libraries and Frameworks 
To implement this program, the author applied and used 

many libraries and frameworks in the Python programming 
language. One of the reasons that the author employs many 
libraries and frameworks is that the program requires many of 
the tools needed for developing the machine learning model. 
Some of those libraries and frameworks are Pandas, Scikit-
Learn, Imbalanced-Learn, Seaborn, Matplotlib, PyTorch, and 
TenSEAL. These libraries and frameworks play a crucial role in 
their respective field, like data cleaning, data visualization, 
building deep learning models, and encryption. We will be 
discussing each of those libraries in much greater detail in the 
next section. 

The first library that the author used in this program is 
Pandas. Pandas is a library that eases the reading of CSV 
datasets, wrapping those datasets in a DataFrame object, and 

manipulating the content of the object by using methods and 
queries. By using Pandas, the author can freely read a CSV file 
and loads them into the program. The author also used Pandas 
for cleaning the dataset of null values or duplicate values which 
can cause bias in the model. 

The author used Scikit-Learn and Imbalanced-Learn in 
tandem for complimenting the functionality of the Pandas 
library. Scikit-Learn is a complete library that can be used to 
instantiate basic machine learning models, split the main dataset 
into a train dataset and test dataset, and further clean the dataset 
of any impure data that can cause bias in the model. Mainly, the 
author uses Scikit-Learn to further clean the dataset of any bad 
data left and to split the dataset into datasets that are used for 
training only and dataset that are used for testing only. On the 
other hand, the author also used the Imbalanced-Learn library. 
Imbalanced-Learn is especially handy for handling imbalanced 
dataset that has a different composition of the number of the 
target class. 

Furthermore, the author also used Matplotlib and Seaborn 
libraries to visualize some data that needed cleaning. At certain 
times, some datasets have an attribute that doesn’t play that big 
of an effect on inferencing a target class or attributes that are 
highly dependent on other nontarget attributes. In developing a 
model, those attributes are sometimes omitted or conjoined with 
other, more important, attributes to minimize the dimension that 
the model operates on. The author can infer those attributes by 
using the heatmap plot of the dataset that is created by Matplotlib 
and Seaborn libraries. 

The next library that the author used is PyTorch. PyTorch is 
mainly used for building more complex deep learning neural 
network models that require hardware integration like GPU to 
shorten the training time. The author extensively used the 
PyTorch library for building the logistic regression model to 
maximize the use of the GPU available on Google Colab. The 
basic data structure of PyTorch is the tensor, which PyTorch 
implements extensively in the neural network object. The tensor 
provides an easy abstraction for the program to execute on 
different types of machines, like multithreading on the CPU or 
thread block on the GPU. Not only that, but the PyTorch library 
also provides an extensive library for learning and calculating 
metrics of the models that the author trained. 

Lastly, the library that the author used in this program is the 
TenSEAL. TenSEAL is a wrapper library in which its core 
implementation is the Microsoft SEAL library, written in C++. 
The author decided to use this library because the original CKKS 
encryption algorithm is first implemented by the research team 
at Microsoft using the SEAL library as is main tools. TenSEAL 
also integrate nicely with PyTorch because the backbone data 
structure of the library is the tensor, in which this also true on 
PyTorch. Although this is very convenience, the TenSEAL 
library is still relatively new and many of the optimization that 
the PyTorch has isn’t yet implemented in TenSEAL. One of the 
most important optimizations that hasn’t been implemented is 
the interface to GPU programming. This causes the executing 
time of the tensor operation to become significantly slower than 
those in PyTorch. Although, in overall functionality, the 
TenSEAL library provides more than enough for the author to 
develop a CKKS-based learning on logistic regression. 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

B. Dataset Preparation 
One of the main cores of building a machine learning model 

is to find a suitable dataset that the model can efficiently 
predicts. The author spent a considerable time seeking and 
searching a dataset that are can be easily predicted by a logistic 
regression model. After researching, the author concludes that 
the dataset of an ongoing cardiovascular study on the residents 
of the town of Framingham, Massachusetts. The dataset contains 
all the necessary patients’ health condition and whether they 
have a 10-year risk of a future heart coronary disease (CHD). 
The CSV file of this dataset is available on this URL: 
https://www.kaggle.com/datasets/dileep070/heart-disease-
prediction-using-logistic-regression?resource=download  

The author chooses this dataset for a couple of reasons. The 
first reason is that this dataset is said to be linearly separable, 
where there is a hyperplane that can separate the target class. The 
next reason that the author chooses this dataset is because the 
number of attributes (dimension) of the dataset is quite low, in 
which there were only 15 variable attributes to choose from. 
Although there were some drawbacks in this dataset. One of 
those drawbacks is that many of the variable attributes aren’t 
independent of one another. Many of those attributes have a high 
correlation coefficient if the author plots them to a heatmap. 

 

 
Fig. 7. Initial Heatmap of the Framingham Dataset 

As you can see, the correlation coefficient between the 
attributes in the dataset is quite high, with some coefficients 
reaching 0.6 or even 0.7 in value. This can cause some 
complications to arise, like multicollinearity. Multicollinearity 
refers to a high degree of interdependence between the features. 
This can cause instability in the model and lead to unreliable 
coefficient estimates. Multicollinearity makes it challenging to 
interpret the impact of individual features on the target variable. 

To solve that problem, the author decided to drop some of 
the attributes that are highly correlated to one another, like 
“prevalentHyp” that are highly correlated to “sysBP” and 
“diaBP”; “diabetes” with “glucose”; and “currentSmoker” with 
“cigsPerDay”. The author also merged some attributes that are 
connected, like “sysBP” and “diaBP” which are merged into 
“meanArterialPressure” using a certain formula. Below is the 
resulting heatmap after dropping and merging those attributes. 

 

 
Fig 8. Resulting Heatmap of the Framingham Dataset 

The next step after dropping correlated attributes is to clean 
the dataset of bad data, like null-valued data and duplicated data. 
This step is done to eliminate all noisy data that can cause bias 
in the resulting model. 

After the resulting dataset is free from noise, the next step of 
the data preparation is to balance the previously imbalanced 
number of target classes in the dataset. One of the ways to 
correct this problem is to use sampling techniques to get an 
equivalent amount of the target class. There are many types of 
sampling, like under-sampling, over-sampling, and SMOTE. 
For this dataset, the author chooses the under-sampling 
technique so that the resulting dataset isn’t too big (resource 
constraint). 

Furthermore, after utilizing under-sampling of the dataset, 
the next step of the data preparation is to normalize the value of 
all numerical attributes. This is done to avoid biased weighting 
when the model is training. When attributes have different 
scales, the model may assign more importance or weight to 
attributes with larger values. Scaling attributes ensures that each 
attribute contributes proportionately to the learning process, 
avoiding biased weighting. 

The last step of the data preparation is to split the resulting 
dataset into two parts, the training and testing dataset. The 
training dataset is used by the model to tune its weights and 
biases. The testing dataset is used to calculate the resulting 
metrics, like accuracy and F1 score. The author used a 0.2 ratio 
between the size of the training and testing dataset. 

C. Training on Regular Data 
After the dataset is prepared, the next step is to build the 

model itself. To compare the learning process on both the regular 
and the encrypted data, the author made two distinct model that 
share a common architecture. The author used logistic 
regression as its models’ architecture. There are several reasons 
why the author chose logistic regression. The first reason is for 
simplicity. Logistic regressions are quite easy to build using 
tensor operation when compared with other models, like 
decision tree, SVM, or multilayered neural network. The second 
reason is that the sigmoid activation function used by logistic 
regression can be approximated in a certain range accurately 
using Remez algorithm. This property came in handy when 
developing a model in a constrained field, like in a CKKS ring 
field. 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

Initially, the author implemented a logistic regression class 
using a layer imported from PyTorch neural network library. 
Here, the author assumed that a logistic regression model is the 
same as a neural network model with only a single output layer 
and activated using a sigmoid function. The author also 
initialized the use of CUDA in tensor operation by adding it to 
the logistic regression model. The integration with CUDA 
would significantly improve the training and testing time of the 
model. 

The next step is to transform the Pandas DataFrame object 
of the dataset into a PyTorch tensor object that are integrated to 
CUDA. This would be the basis of the dataset used for future 
PyTorch operation. 

After the dataset is transformed into a tensor, the next step is 
to define the type of loss function and optimizer function used 
to tune the weight and bias tensor in the model. There were many 
loss-function and optimizer-function defined by the PyTorch 
library, all with their advantages and drawbacks. The author 
chose the “binary cross entropy” for the models’ loss function 
and the “stochastic gradient descent” for the models’ optimizer 
function. The reason that the author chose the two functions is 
for the ease to replicate the behavior of the two functions when 
implemented in encrypted data. 

The last step to define before training the model is to define 
the metrics that would be used for calculating the “correctness” 
of the model. The author chose to use the metric “F1 score” 
rather than “accuracy” because of the imbalanced dataset, in 
which the F1 score metric would fare better than the accuracy 
metric. 

After all parameters had been defined, the model can finally 
be trained using the combination of the loss-function “stochastic 
gradient descent” and optimizer-function “binary cross entropy” 
to calculate the change of weight and bias tensor in the layer 
using the train dataset. After the model had been trained, the 
model had to be evaluated using the “F1 score” metric to 
quantize the correctness of the model compared to the test 
dataset. Below are the resulting weights and biases of the trained 
logistic regression model. 

Weight: [ 
0.2106858491897583, 
0.27098724246025085,  
-0.17342333495616913, 
0.2575427293777466,  
-0.02136250212788582,  
0.06753615289926529,  
-0.19143564999103546,  
0.1304694563150406,  
0.1681479811668396,  
-0.22633618116378784,  
0.2356201410293579 
] 
Bias: [-0.2182490974664688] 

 

D. Training on Encrypted Data 
There were some key notable differences in training using 

CKKS encrypted data when compared to training using regular 
data. The author had to define several additional parameters and 
change some data structures for the model to accept encrypted 
training data. 

The first step in preparing the model to process encrypted 
data is to define the CKKS encryption parameter. There were 
several parameters of CKKS encryption that needed to be 
defined. The first parameter is the degree of polynomial modulus 
(scaling factor), which defines the encoding precision for the 
binary representation of the number. The SEAL library states 
that the degree of polynomial modulus must be a power of two.  
The degree of polynomial modulus also directly affects the 
number of coefficients in plaintext polynomial, the size of the 
ciphertext elements, the computational performance of the 
scheme (bigger is worse), and the security level (bigger is 
better). 

Another parameter that had to be defined is the coefficient 
modulus sizes, which is the scheme for list of binary sizes. Using 
this list, the SEAL library will generate a list of primes of those 
binary sizes, called the coefficient modulus. The SEAL library 
states that the prime numbers in the coefficient modulus must be 
at most 60 bits and must be congruent to 1 modulo 2 * degree of 
polynomial modulus. The coefficient modulus sizes also directly 
affect the size of ciphertext elements, the length of list that 
indicates the level of the scheme (the number of multiplications 
allowed at a single time), and the security level (bigger is worse).  

The next step after all the encryption parameter was defined 
is to encrypt all the dataset previously used. Note that the 
encryption time taken in each dataset is quite long because the 
author didn’t integrate the operation to the CUDA device. 

After the encryption parameter is settled, the next problem 
we had to solve is how to replicate the sigmoid function in a 
CKKS ring field. In CKKS ring field, the operation that can be 
ran between two CKKS operands are only addition and 
multiplication, where the inverse reciprocal operation is not 
defined. One solution to solve this problem is to approximate the 
sigmoid function by some polynomial function that can 
approximate the sigmoid function well. After reading some 
paper, the author came into conclusion that the best way to 
approximate the sigmoid function is by implementing the Remez 
algorithm. Remez algorithm works by calculating the 
polynomial for the best approximation of a function by applying 
the minimax approximation algorithm family. According to this 
paper (https://eprint.iacr.org/2018/462.pdf) that the author cites, 
the best approximation of the sigmoid function in range between 
–5 and 5 is the formula below: 

 

 
Fig. 9. Remez Approximation of the Sigmoid Function 

 

 For the approximation to works, the resulting multiplication 
operation between the input and the weight vector followed by 
addition operation with the bias vector must be in range between 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

–5 and 5. The author anticipates this by scaling all the numerical 
attribute of the dataset into the range of 0 and 1 to minimize the 
distribution that lies out of range. 

After the sigmoid function approximation is defined, the 
next step is to define the encrypted logistic regression class. 
There were several differences between the regular and the 
encrypted logistic regression class. For instance, in the 
encrypted logistic regression class, there were two options for 
doing the forward operation, which is the forward operation for 
encrypted input and the regular input. These two forward 
operations are called at different stages of model learning. The 
encrypted forward operation was called when the model is at the 
training phase, in which the data used as input are encrypted 
(server operation). The regular forward operation was called 
when the model is at the testing phase, in which the data used as 
input aren’t encrypted (client operation). 

Analogous to the logistic regression with regular training 
data, after all the parameters had been defined, the model can be 
trained and tested using the combination of loss-function 
“stochastic gradient descent”, optimizer-function “binary cross 
entropy”, and metric “F1 score”. Below are the resulting weights 
and biases of the trained logistic regression model. 

Weight: [ 
0.1294832224549116,  
0.14004516821634833,  
-0.04975166847947307,  
0.022459932431842158,  
0.04711431104768693,  
0.009268722886341618,  
0.009393104941824857,  
0.013122961747297213,  
-0.015721474469442026,  
0.02044465432915576,  
0.047737325585756205 
] 
Bias: [-0.04412464284436392] 

 

IV. ANALYSIS 
Referring to the Google Colab notebook that the author had 

written, there were some key notable differences between the 
result in model trained using regular data (mainly utilize 
PyTorch operation) and the model trained using encrypted data 
(mainly utilize TenSEAL operation). 

When comparing the result between the model that was 
using the regular and the model that was using the encrypted 
data, there were some notable differences. The first minor 
difference that if of the value of the F1 Score of each testing 
metrics. There were some explanations about this phenomenon. 
The first explanation is that the possibility that because of the 
approximate arithmetic nature of the CKKS encryption, there 
will be several imprecisions that can directly affects the F1 score 
metrics, in which these imprecisions would grow over linearly 
over time due to the number of operations done over the 
encryption. The second explanation is that the use of Remez 
algorithm to approximate the sigmoid function. The function for 

approximating the sigmoid function has a defined range that 
only works well if and only if the input is included in that range. 
It is entirely possible that the resulting operation of 
multiplication with the weight vector and the subsequent 
addition with the bias has the potential to generate a result that 
is outside of the range in the Remez algorithm. 

 

 
Fig. 10. F1 Score of the Model using Regular Data 

 

 
Fig. 11. F1 Score of the Model using Encrypted Data 

 

Another notable difference is the training time it took 
between the model that was using regular data and the model 
that was using encrypted data. The model that was using regular 
data had a much faster training time, that only of less than a 
second per training epoch (there were some overhead costs in 
compiling the code into GPU). This was a clear difference if it’s 
compared to the model that was using encrypted data, where the 
training time per epoch of that model reaches five minutes 
(averaging just below 300 seconds). The training time 
differences and the resource that it took is significant enough 
that not every server that has the capacity in training the model 
using regular data can handle training the model in encrypted 
data. Because of that overhead training time, the widespread 
implementation of CKKS encryption scheme in machine 
learning systems is hindered. The amount of time that it took to 
accomplish a single task using encrypted data is deal breaker for 
companies that is trying to secure their machine learning 
systems. There exists many more method for securing their 
systems trade off more security in favor of performance, like the 
federated learning techniques. Compared to homomorphic 
encryption, the federated learning has a system that are more 
vulnerable to attacks but a much faster and efficient in term of 
time and resources needed. 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

 
Fig. 12. Training Time of the Model using Regular Data 

 

 
Fig. 13. Training Time of the Model using Encrypted Data 

V. CONCLUSION 
The need of creating a secure and privacy preserving 

machine learning systems is continuously rising in the last 
decade or so. One of the best solutions in developing a secure 
machine learning systems is to implement a homomorphic 
encryption into the training and deploying operations of a 
machine learning models. There are two types of homomorphic 
encryption: partially homomorphic encryption and fully 
homomorphic encryption. In a partially homomorphic 
encryption, only one of the two main operations in a ring field 
(addition and multiplication) are supported by the encrypted 
operation. In a fully homomorphic encryption, the two main 
operations of addition and multiplication are supported by the 
encrypted operation. Therefore, a fully homomorphic 
encryption is better option to use in a machine learning systems 
than a partially homomorphic encryption. 

One of the examples of a fully homomorphic encryption 
algorithm is the CKKS scheme. The CKKS scheme utilize an 
approximate arithmetic in its internal calculation. The 
approximation arithmetic can sometime cause inaccuracy when 
calculating a fix point value. Fortunately, in a machine learning 
system, the calculation of the model mostly dealt with a floating-
point dataset and can dealt with certain threshold of 
inaccuracies. 

Using the CKKS scheme, the author can implement a 
MLOps system in which the model is hosted at a remote server. 
Then, the client could have sent their own sensitive data that 
were encrypted using CKKS over an unsecured connection to 
the server. Then, the server can train a certain model using the 
clients’ encrypted data to tune the parameter of the models. The 
resulting parameters will be homomorphic to the parameters of 
the model that are trained using ordinary data. After the server 
trained the model, the client could have sent some new encrypted 
input to the model to be inferenced. The model would calculate 
the new encrypted output and sent it back to the clients. After 
that, the clients can decrypt the received output from server and 
use it in their local machine. 

The main drawback of the use of CKKS scheme in a machine 
learning system is that the overhead cost of training using 
encrypted data is still quite high. The operations needed for a 
single addition or multiplication on an encrypted data is 
significantly higher than those done on regular data. To 
implement this in an industrial scale, the author will need to 
optimize the calculations of encrypted data. One of those 
optimizations needed is the use of hardware accelerations, like 
GPUs, to further reduce the training time of models. 

SOURCE CODE LINK AT GOOGLE COLAB 
The work containing all the authors’ implementations and 

programs is contained in this Google Colab notebook: 
https://colab.research.google.com/drive/1eA8xgFdiXPwhehq0
NAnLtokspjjGp60d?usp=sharing  

ACKNOWLEDGMENT 
The author is grateful to Mr. Rinaldi Munir, the primary 

lecturer of the IF4020 Cryptography who taught and guide the 
author the subject of cryptography so much so that the author 
can finish this paper. The author also thankful to all of friends 
and family that supported the author with time and resources to 
complete this paper. 

REFERENCES 
[1] Song et al. 2016. Homomorphic Encryption for Arithmetic of Approximate 

Numbers. https://eprint.iacr.org/2016/421.pdf, accessed on May 15th, 
2023. 

[2] Benaissa, Ayoub. 2020. Homomorphic Encryption in PySyft With SEAL 
and PyTorch. https://blog.openmined.org/ckks-homomorphic-
encryption-pytorch-pysyft-seal/, accessed on May 17th, 2023. 

[3] Lopardo et al. 2020. What is Homomorphic Encryption?. 
https://blog.openmined.org/what-is-homomorphic-encryption/, accessed 
on May 17th, 2023. 

[4] Huynh, Daniel. 2020. CKKS Explained: Part 1, Vanilla Encoding and 
Decoding. https://blog.openmined.org/ckks-explained-part-1-simple-
encoding-and-decoding/, accessed on May 19th, 2023. 

[5] Huynh, Daniel. 2020. CKKS Explained: Part 2, Full Encoding and 
Decoding. https://blog.openmined.org/ckks-explained-part-2-ckks-
encoding-and-decoding/, accessed on May 19th, 2023. 

[6] Huynh, Daniel. 2020. CKKS Explained: Part 3, Encryption and 
Decryption. https://blog.openmined.org/ckks-explained-part-3-
encryption-and-decryption/, accessed on May 20th, 2023. 

[7] Huynh, Daniel. 2020. CKKS Explained: Part 4, Multiplication and 
Relinearization. https://blog.openmined.org/ckks-explained-part-4-
multiplication-and-relinearization/, accessed on May 20th, 2023. 



Makalah Tugas IF4020 Kriptografi, Semester II Tahun 2022/2023 
 

[8] Huynh, Daniel. 2020. CKKS Explained: Part 5, Rescaling. 
https://blog.openmined.org/ckks-explained-part-5-rescaling/, accessed on 
May 20th, 2023. 

[9] Chen et al. 2018. Logistic Regression over Encrypted Data from Fully 
Homomorphic Encryption. https://eprint.iacr.org/2018/462.pdf, accessed 
on May 21st, 2023. 

 

STATEMENT 
I hereby declare that this paper is of my own writing, not an 

adaptation or a translation of other people's papers, nor 
plagiarism. 

Bandung, 22nd of May 2023 

 

Rayhan Kinan Muhannad 
13520065 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 


